metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. S. Dharmaprakash,^a S. Thamotharan,^b* Gururaj M. Neelgund^c and S. A. Shivashankar^c

^aDepartment of Chemistry, B.M.S. College of Engineering, Bangalore 560 019, India, ^bMolecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, and ^cMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: thamu_as@yahoo.com

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.004 Å R factor = 0.058 wR factor = 0.157 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(*tert*-butyl 3-oxobutanoato- $\kappa^2 O^1, O^3$)aluminium(III) at 153 K

In the title complex, $[Al(C_8H_{13}O_3)_3]$, a potential metal-organic chemical vapour deposition (MOCVD) precursor, three bidentate ligand molecules are bound to the metal atom, forming an octahedral geometry. Two non-planar sixmembered chelate rings adopt screw-boat conformations, while the third ring has a conformation that lies about halfway between an envelope and a screw-boat.

Comment

We have been investigating the use of metal-organic (MO) complexes as precursors for chemical vapour deposition (CVD) for thin films (Patnaik *et al.*, 1996; Urs *et al.*, 2000, 2003*a*,*b*; Urs, Anitha *et al.*, 2001; Urs, Shalini *et al.*, 2001). The structure determination of the title complex, (I), a possible MOCVD precursor, is part of our ongoing project. Complex (I) is isostructural with the Fe complex, (II), *viz.* tris(*tert*-butyl 3-oxobutanoato)iron(III) (Urs *et al.*, 2000).

In (I), the Al atom is coordinated by the ketone O atoms of three bidentate ligands, forming an octahedral geometry (Fig. 1). Two of the non-planar six-membered chelate rings, Al/O1/C3/C2/C1/O2 and Al/O4/C11/C10/C9/O5, adopt screwboat conformations, while the third non-planar chelate ring, Al/O7/C17/C18/C19/O8, has a conformation that lies about halfway between an envelope and a screw-boat. In (II), all three non-planar chelate rings adopt half-chair conformations (Urs *et al.*, 2000). Each chelate ring is approximately perpendicular to each of the other two chelate rings. The M-O bond

© 2006 International Union of Crystallography All rights reserved Received 18 January 2006 Accepted 26 January 2006

The molecular structure of (I), showing 30% probability displacement ellipsoids and atom-numbering scheme.

Figure 2

The crystal packing of (I), viewed along the a axis. All H atoms have been omitted for clarity.

lengths and O-M-O bond angles in (I) and (II) are different, perhaps as a result of the steric constraint imposed by different ionic radii: O.79 Å for Fe³⁺ and 0.68 Å for Al³⁺ (Shannon, 1976). In (I), the Al-O bond lengths range from 1.8572 (19) to 1.951 (2) Å, and O-Al-O angles within the chelate rings vary from 86.9 (1) to 88.0 (1)°. In (II), the Fe-O bond lengths range from 1.945 (3) to 2.048 (3) Å and O-Fe-O angles within the chelate rings vary from 86.9 (1) to 88.0 (1)°.

In (I), two of the three methyl groups in each *tert*-butyl group act as donors for weak intramolecular interactions with keto O atoms within the chelate rings (Table 2). Each interaction has a graph-set motif S(6) (Bernstein *et al.*, 1995). Similar interactions were observed in (II) (Urs *et al.*, 2000). As in (II), the crystal packing in (I) (Fig. 2) is dominated by van der Waals interactions.

Experimental

The title complex was synthesized by dissolving potassium acetate (2.94 g, 30 mmol) and *tert*-butyl 3-oxobutanoate (4.9 ml, 30 mmol) in 30% ethanol. This was followed by the addition of $Al(NO_3)_3$ ·9H₂O (3.75 g, 10 mmol). The resultant mixture was stirred under ice-cold conditions for 30 min and the precipitate formed was filtered off, washed with distilled water, suction-dried and recrystallized from cyclohexane. Single crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Crystal data

[Al(C₈H₁₃O₃)₃] $D_x = 1.190 \text{ Mg m}^{-3}$ $M_r = 498.53$ Mo $K\alpha$ radiation Monoclinic, $P2_1/n$ Cell parameters from 7479 a = 9.5660 (16) Åreflections $\theta = 1.0-25.0^{\circ}$ b = 16.241 (3) Å $\mu=0.12~\mathrm{mm}^{-1}$ c = 18.211 (3) Å T = 153 (2) K $\beta = 100.464 (3)^{\circ}$ V = 2782.2 (8) Å³ Block, colourless Z = 4 $0.30 \times 0.20 \times 0.20 \mbox{ mm}$

> 4912 independent reflections 3533 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.041$

 $\theta_{\max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$

 $k = -19 \rightarrow 17$ $l = -21 \rightarrow 21$

Data collection

- Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)
- $T_{\rm min} = 0.936, T_{\rm max} = 0.977$ 22128 measured reflections

Refinement

 $\begin{array}{ll} \text{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0797P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.058 & w + 0.4155P] \\ wR(F^2) = 0.158 & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ S = 1.06 & (\Delta/\sigma)_{\text{max}} < 0.001 \\ 4912 \text{ reflections} & \Delta\rho_{\text{max}} = 0.57 \text{ e } \text{\AA}^{-3} \\ 319 \text{ parameters} & \Delta\rho_{\text{min}} = -0.16 \text{ e } \text{\AA}^{-3} \\ \text{H-atom parameters constrained} \end{array}$

Table 1 Selected geometric parameters (Å, °).

Al-O7	1.8572 (19)	O1-C3	1.251 (3)
Al-O2	1.860 (2)	O2-C1	1.286 (3)
Al-O5	1.8675 (19)	O4-C11	1.250 (3)
Al-O1	1.9299 (19)	O5-C9	1.290 (3)
Al-O4	1.9414 (18)	O7-C17	1.287 (3)
Al-O8	1.951 (2)	O8-C19	1.253 (3)
02-Al-01	90.02 (8)	O5-Al-O4	89.90 (8)
O5-Al-O1	175.18 (9)	O7-Al-O8	90.49 (8)
O7-Al-O4	175.23 (9)	O2-Al-O8	172.20 (8)

Table 2	
Hydrogen-bond geom	netry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6-H6A···O1	0.98	2.33	2.883 (4)	115
C7−H7C···O1	0.98	2.46	2.999 (3)	114
C13−H13C···O4	0.98	2.41	2.923 (3)	112
$C14-H14A\cdots O4$	0.98	2.36	2.936 (4)	117
C21−H21C···O8	0.98	2.38	2.930 (4)	115
C22-H22A···O8	0.98	2.43	2.980 (4)	115

The structure was refined with the atomic coordinates of non-H atoms taken from the isostructural Fe complex (Urs *et al.*, 2000). All methyl H atoms were constrained to an ideal geometry (C-H = 0.98 Å), with $U_{iso}(H) = 1.5U_{eq}(C)$, but were allowed to rotate freely about the C-C bonds. All remaining H atoms were placed in geometrically idealized positions (C-H = 0.95 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; method used to solve structure: atomic coordinates of non-H atoms taken from isostructural Fe complex (Urs *et al.*, 2000); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

The diffraction data were collected using the CCD facility at the Institute under the IRFA program of the Department of Science & Technology.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Patnaik, S., Guru Row, T. N., Lakshmi, R., Anjana, D., Goswami, J., Shivashankar, S. A., Chandrasekaran, S. & Robinson, W. T. (1996). Acta Cryst. C52, 891–894.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Urs, U. K., Anitha, K. C. Raghunathan, K. L., Shivashankar, S. A., Robinson, W. T. & Guru Row, T. N. (2001). Acta Cryst. E57, m242–m243.
- Urs, U. K., Dharmaprakash, M. S., Shivashankar, S. A. & Guru Row, T. N. (2003a). Acta Cryst. E59, m1–m2.
- Urs, U. K., Dharmaprakash, M. S., Shivashankar, S. A. & Guru Row, T. N. (2003b). Acta Cryst. E59, m83-m84.
- Urs, U. K., Shalini, K., Cameron, T. S., Shivashankar, S. A. & Guru Row, T. N. (2001). Acta Cryst. E57, m457–m458.
- Urs, U. K., Shalini, K., Shivashankar, S. A. & Guru Row, T. N. (2000). Acta Cryst. C56, e448–e449.